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Abstract

Maintaining the three-dimensional architecture and cellular
complexity of lung tissue ex vivo can enable elucidation of the
cellular and molecular pathways underlying chronic pulmonary
diseases. Precision-cut lung slices (PCLS) are one human-lung
model with the potential to support critical mechanistic studies
and early drug discovery. However, many studies report short
culture times of 7–10 days. Here, we systematically evaluated
poly(ethylene glycol)-based hydrogel platforms for the
encapsulation of PCLS. We demonstrated the ability to support ex
vivo culture of embedded PCLS for at least 21 days compared with

control PCLS floating in media. These customized hydrogels
maintained PCLS architecture (no difference), viability (4.7-fold
increase, P, 0.0001), and cellular phenotype as measured by
SFTPC (1.8-fold increase, P, 0.0001) and vimentin expression
(no change) compared with nonencapsulated controls.
Collectively, these results demonstrate that hydrogel
biomaterials support the extended culture times
required to study chronic pulmonary diseases ex vivo
using PCLS technology.

Keywords: precision-cut lung slice; hydrogel; biomaterial; three-
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Chronic respiratory diseases rank among
the leading causes of death world wide (1).
Although asthma is the most prevalent
chronic respiratory disease, chronic
obstructive pulmonary disease (COPD)
is the fourth leading cause of death by
disease in the United States, with a global
prevalence of over 250 million patients (2).
Current therapeutic options for chronic
pulmonary diseases do not halt or reverse

disease progression. More effective
treatments are needed for patients with
chronic conditions, such as asthma,
COPD, pulmonary hypertension,
interstitial lung disease, and cystic fibrosis.
Despite financial investment of over $115
million annually (3), the rate of approval
for new respiratory therapies lags behind
that of cardiovascular, metabolic, and
neurological treatments (1).

Fewer than 10% of respiratory
therapies in phase-I testing manifest in
a commercially available product (1, 4),
due largely to a lack of translation from
discovery in an animal model to testing in
human clinical trials. Nearly 60% of novel
therapeutics fail in phase-II and over 50%
of those remaining do not continue beyond
phase-III clinical trials (5). Preclinical
animal models often exhibit poor
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predictivity of human respiratory disease
(1, 4). Therefore, a need remains for the
development of complementary tools that
preserve native human lung structure and
function ex vivo. These technologies will
enable scientists, engineers, and clinicians
to study the cellular and molecular
pathways underlying respiratory disease
progression to advance more precise and
efficient therapeutic drug development.

Human-origin ex vivo and explant
cultures, such as precision-cut lung slices
(PCLS), are used with increasing frequency
for modeling respiratory pathology (4).
PCLS are thin slices of lung tissue that
maintain the complex microarchitecture,
cellular diversity, and functional response
to stimuli observed in native lung tissue,
enabling ex vivo mechanistic studies of
pathogenesis (6). Initial PLCS studies
focused on airway constriction that is
characteristic of asthma (7), and this
technology has since been validated in
studies of idiopathic pulmonary fibrosis
(IPF) (8, 9), pulmonary hypertension (10,
11), and COPD (12, 13). However, PCLS
remain limited by their short duration of
viability and functionality ex vivo, often
reported to be only 7–10 days (13, 14).
Over this short duration, PCLS exhibit
changes in tissue architecture (14),
decreased production of SFTPC (13),
and increased proliferation of vimentin-
producing mesenchymal cells.

Given the potential clinical impact of
PCLS for mechanistic studies and high-
throughput drug screening experiments, our
goal was to extend the duration of viability
and functionality of PCLS in ex vivo culture.
One study has reported that encapsulation
of precision-cut liver slices in Matrigel
maintained slice architecture, improved
viability, and increased liver-specific
metabolism compared with controls over a
period of 72 hours (15). Based on the
success of this study, we hypothesized that a
hydrogel biomaterial could maintain PCLS
architecture, viability, and cellular function
in vitro.

Hydrogels are highly cross-linked
polymer networks that absorb large volumes
of water while retaining the ability to be
created with precise mechanical properties
(i.e., stiffness), supplemented with
covalently bound cell-adhesive ligands
and/or tethered signaling factors, and tuned
to degrade on demand. These biomaterials
are emerging as ideal extracellular matrix
(ECM) mimics for ex vivo cell culture

applications (16). Integrins expressed in
response to specific ligand-binding
interactions with the basement membrane
or ECM mimics in hydrogel biomaterials
are critical for maintenance of cellular
homeostasis. Two ligands of particular
importance in the pulmonary ECM are
fibronectin and laminin, represented by
the short peptide sequences, RGDS and
YIGSR, respectively, covalently attached
to the hydrogel biomaterials presented
here to promote integrin binding (17, 18).
Specifically, a5b1 (RGDS) and a3b1

(YIGSR) are expressed by cells in the lung
(19). RGDS is critical for cellular adhesion
to poly(ethylene glycol) (PEG)-based
hydrogels (20, 21), and YIGSR is essential
for maintaining stemness in epithelial cells
(18, 22).

Here, we present a systematic study
that varies PEG-based hydrogel thickness
as well as RGDS and YIGSR ligand
concentration to select the optimal
encapsulation procedure for improving
PCLS viability and functionality.
Quantification and statistical analysis of
viability, SFTPC production, vimentin
expression, and lung slice architecture
allowed us to select an encapsulation
method that extends PCLS culture to at least
21 days ex vivo. This major technological
advance can be easily adopted in any
laboratory studying PCLS for early-stage
novel target identification and drug
discovery. A portion of the work described
in this article was published in an abstract
in the Annals of the American Thoracic
Society (23).

Methods

Methods are described in detail in the data
supplement.

PCLS Preparation
PCLS were prepared from 6- to 8-week-
old C57BL/6J male mice (The Jackson
Laboratory) or deidentified human tissue
samples (Donor Alliance), as previously
described (13). Circular punches 4 mm in
diameter were evaluated in all experiments.
PCLS samples were cultured in media
for at least 18 hours after slicing before
encapsulation.

Hydrogel Preparation
Norbornene-functionalized PEG (PEGNB;
8-arm, molecular weight 40 kg/mol),

commercially available from JenKem or
Creative PEGWorks, was synthesized as
previously described (24). PEG-dithiol
(molecular weight 3.4 kg/mol) was
purchased from Sigma. Peptide sequences
that mimic adhesive ligands (CGRGDS
and CGYIGSR) were obtained from GL
Biochem. The photoinitiator, lithium
pheyl-2,4,6-trimethylbenzoylphosphinate,
was synthesized as previously described
(25), but can be purchased from Sigma.
Solutions of 5 weight percent PEGNB, 1
weight percent PEG-dithiol, 0.1–1.0 mM
CGRGDS and CGYIGSR (see Table E1 in
the data supplement), and 1.7 mM lithium
pheyl-2,4,6-trimethylbenzoylphosphinate
were prepared in HEPES buffering agent
(Life Technologies) for mechanical
characterization or complete medium for
PCLS embedding.

Characterization of Mechanical
Properties
The elastic modulus (E) of murine lung
tissue samples and hydrogels was measured
using parallel-plate rheology (21) and
atomic force microscopy (AFM) (26–28),
as previously described.

PCLS Embedding and Culture
Procedure
PCLS were encapsulated by hand or
by three-dimensional (3D) printing
(Figure E1). Encapsulation by hand
was enabled by constraining hydrogel
solutions in a custom-made plastic
mold during polymerization. The data
presented here were collected from 3D-
printed samples for improved accuracy
and precision. Embedded PCLS and
nonembedded controls were cultured
freely floating in 12-well plates in
complete media (Dulbecco’s modified
Eagle medium: Nutrient Mixture F-12
[Gibco]; supplemented with 0.1% FCS
[PAA Laboratories]; 100 U$ml21

penicillin, 100 mg$ml21 streptomycin,
and 2.5 mg$ml21 amphotericin B
[Sigma]) in a humidified incubator (378C,
5% CO2) with media changes every 48
hours (13).

Viability Experiments
A resazurin-based cell viability assay
(PrestoBlue; Thermofisher Scientific)
was performed at Day 1, 3, 7, 10, 14, 17,
and 21, per the manufacturer’s instructions.
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Immunostaining, Fluorescence
Microscopy, and Image Analysis
Embedded and control PCLS were fixed,
embedded in optimal cutting temperature
(OCT; Thermofisher Scientific) compound,
flash frozen, and sectioned (30-mm
slices) using a cryostat (Leica CM1850).
Immunostaining was completed for SFTPC,
E-cadherin, and vimentin with a DAPI
counterstain to visualize nuclei. Image
analysis was performed using ImageJ
software (NIH) to determine the number
of SFTPC-positive cells and the area of
vimentin coverage. A stereological
approach was used to measure lung slice
architecture using E-cadherin–stained
images (Stereotopix Software; VisioPharm)
(29, 30).

Diffusion Experiments
Hydrogels were polymerized at a thickness
of 1.1 mm in trans-well inserts (ThinCert;
Greiner Bio-One) and partially submerged
in PBS. Fluorescently labeled solutions of a
small hydrophobic molecule (fluorescein;
376 g/mol) and a large hydrophilic
dextran (40 kg/mol) were pipetted on top
of the hydrogels and incubated at 378C.
Samples were aliquoted from the PBS at
12, 24, and 48 hours, and fluorescence
intensities were measured with a plate
reader (Synergy H1 Hybrid Multi-Mode
Reader; BioTek).

Statistical Analysis
G*Power statistical software (31)
calculated the sample size required (n = 5)
to ensure over 80% power for detecting an
effect size of 1.6 (13) with a Gaussian
distribution (one-sided t test, P, 0.05).
JMP software (SAS Institute) generated
nine hydrogel conditions (Table E1) for
evaluation. Viability and protein
expression results analyzed in the software
used a least-squares regression model to
determine significance of all factors and
plot predicted responses. Parametric or
nonparametric one-way and two-way
ANOVA tests and tests for multiple
comparisons (Tukey and Kruskal-Wallis,
respectively) were conducted as
appropriate to find significant differences
between sample means (95% confidence
interval; GraphPad Prism 7 Software;
GraphPad Software Inc.). Data are
presented as mean (6SEM), normalized to
Day 1 results.

Results

Hydrogel Synthesis and
Characterization
Encapsulation of precision-cut tissue slices
derived from liver within naturally derived
hydrogels previously improved viability and
functionality over 72 hours in culture (15).
Here, we exploited the ability to precisely
control both hydrogel elastic modulus
(stiffness) and bioactive ligand
concentration to design the optimal
encapsulation procedure (Figure 1A) for
maintenance of PCLS ex vivo. As ECM
mechanics are a powerful regulator of
cellular phenotype (32, 33), the mechanical
properties of murine and human lung
tissue were characterized. Next, hydrogels
were synthesized by reacting PEGNB with a
PEG-dithiol cross-linker (Figure 1B). The
ratio of reactive groups on the PEGNB to
those on the cross-linker was varied from
0.5 to 1.0 to create hydrogels with a range
of elastic modulus values (Figure 1C),
aiming to match healthy murine tissue
values for this study and diseased human
tissue values for future experiments.
Rheological measurements quantified the
shear modulus of murine lung tissue and
hydrogel samples, which was converted
to elastic modulus assuming a Poisson’s
ratio of 0.4 for lung tissue (34) and 0.5
for hydrogels (35). Murine lung tissue
measured an elastic modulus of 1.45
(60.08) kPa (Figure 1C). Hydrogel elastic
modulus scaled with the ratio of PEG-
dithiol (thiols) to PEGNB (-enes) as
expected. A ratio of 0.9 resulted in an elastic
modulus of 1.17 (60.07) kPa, not
statistically different from healthy mouse
lung (P= 0.071, Tukey test) (Figure 1C). All
subsequent experiments used this ratio to
recreate healthy mouse lung mechanics.

AFM quantified the median elastic
modulus of healthy (E = 10.846 0.74 kPa)
and COPD (E = 4.066 0.31 kPa) human
lung tissue as well as a hydrogel formulated
to match COPD lung mechanics
(E = 4.996 0.02 kPa) (Figure 1D). These
results demonstrate a high degree of control
over hydrogel mechanics for modeling
healthy and diseased ECM mechanics for
future studies.

PCLS Embedding
Two different methods of hydrogel
encapsulation were performed. Briefly, a
bottom layer of hydrogel was pipetted into a

plastic mold (Figure E1A) or 3D printed
onto a glass slide and polymerized. A 4 mm
punch of a PCLS was placed on top of this
layer, coated with hydrogel of an equal
thickness, and polymerized. PCLS and the
encapsulating hydrogels were fluorescently
labeled, cryosectioned, and imaged.
Measurements and linear regression
analysis of overall hydrogel thickness
from these images showed that manual
encapsulation resulted in less uniform
hydrogels with higher variability in total
thickness than 3D-printed hydrogels
(Figures E1B–E1D). As a result, 3D printing
created samples for subsequent experiments
to ensure high accuracy and precision when
evaluating the impact of hydrogel thickness
on biological outputs (Figure 2A).

A multifactorial statistical design
determined the minimum number of
hydrogel combinations needed to analyze
the impact of three variables—encapsulation
thickness, RGDS concentration, and
YIGSR concentration—on PCLS viability,
architecture, and cellular diversity (SFTPC
and vimentin expression). This method
identified a minimum of nine hydrogel
conditions (Table E1) fabricated for testing.

Engineered Hydrogels Improved
PCLS Viability, Architecture, and
Cellular Function over 21 Days in
Culture
Encapsulated PCLS representing all nine
hydrogel conditions and nonencapsulated
PCLS controls (n= 5) were monitored for
metabolic activity using the resazurin-
based PrestoBlue Cell Viability Reagent
(ThermoFisher Scientific). Metabolic
activity results normalized to initial
readings recorded on Day 1 showed that
some hydrogel conditions maintained
significantly higher cellular metabolic
activity over time than PCLS controls
(Figure 2B). The best performing hydrogel
improved viability by 4.7-fold (P, 0.0001).
Based on these results, comparisons
between the best-performing hydrogel
condition and nonencapsulated controls
were performed for architecture and
cellular function at Day 21. Representative
images of staining for E-cadherin
(Figure 2C) show PCLS architecture in
nonencapsulated controls and the best-
performing hydrogel condition at Days 1
and 21. Stereological analysis of volume-
weighted mean alveolar volume and
average alveolar tissue area per high-
powered field revealed no significant
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differences between hydrogel-embedded
PCLS and controls and no statistical
differences over time (two-way ANOVA,
P. 0.05; Figure 2D).

Quantification of metabolic activity
(Figure 3A), number of SFTPC-positive
cells (Figure 3B), and area coverage of
vimentin (Figure 3C) on Day 21 was

normalized to Day 1 values, revealing one
hydrogel condition that improved all three
outputs compared with controls. Cellular
phenotype, as measured by SFTPC, showed
a 1.8-fold increase (P, 0.0001), and
vimentin expression showed no change
compared with nonencapsulated controls.
The trend lines resulting from statistical

analysis describe the response of each
output to every variable tested (Figure
3D) with a predicted optimal hydrogel
formulation (0.1 mM RGDS and 0.2 mM
YIGSR with a print thickness of 1.1 mm)
for maximizing viability and SFTPC
production, while minimizing vimentin
coverage. The effect magnitude for all
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factors and interactions showed that
thickness, YIGSR concentration, and the
interaction between these two factors were
the most significant contributors to PCLS
viability and function within hydrogels
(Figure 3E).

Diffusion through Hydrogels Verified
Feasible Therapeutic Delivery to
Encapsulated PCLS
Two molecules representing a biologically
relevant size range (376 g/mol to 40 kg/mol)
were selected to evaluate diffusion capacity
through the optimal hydrogel formulation
(Table E2). Effective diffusion of both test
molecules through the full thickness of each
hydrogel was measured over 48 hours
(Figures 3F and 3G).

Discussion

Translation of novel respiratory therapies
from discovery to effective patient
treatments remains a challenge. PCLS
represent a promising way to bridge this
gap, enabling researchers to investigate
connections between cellular and organ-
level responses in human tissues ex vivo.
These models are now widely used to
address challenges in respiratory
toxicology, metabolism, physiology,
infection, and pathology (36). Previous
studies have shown that PCLS can
recapitulate certain aspects of COPD (37)
and IPF (9, 38) pathophysiology. Van Dijk
and colleagues (37) showed that elastase-
treated PCLS exhibited elastin and collagen
fiber disorganization, leading to diminished
alveolar repair and altered airway
mechanics. The optimal timeframe for
evaluating airway contractility in these
experiments was reported to be between 16
and 52 hours after slicing, and thus limited
the collection of further post-treatment
time points. Alsafadi and colleagues (9)
showed that a mixture of profibrotic growth
factors, proinflammatory cytokines, and
signaling molecules induced early fibrosis-
like characteristics in human PCLS.
However, a longer-duration study would be
required to observe extensive and
irreversible ECM remodeling, a hallmark
of IPF in vivo (9). The ability to maintain
PCLS culture duration for extended
periods of time is critical for studying
chronic pulmonary diseases. Here,
we have established a method for
encapsulating PCLS in precisely designed

hydrogel biomaterials to extend cellular
viability and function for 21 days in
culture.

The results in this article highlight the
importance of systematically designing the
materials used as ECM mimics in 3D cell
culture applications. Previous work by van
Midwoud and colleagues (15) showed that
encapsulation of precision-cut liver slices
improved slice viability and liver-specific
metabolism in culture; however, the data
were limited to 72 hours, because the
encapsulation method was not optimized.
Liver slices were encapsulated in Matrigel, a
commercially available gelatinous protein
mixture derived from mouse sarcoma
tumor tissue (15). Although Matrigel
exhibits inherent bioactivity, this material
suffers from batch-to-batch variability of
composition and mechanical properties,
rendering it challenging to optimize (39).
The present study demonstrated that, in
addition to matching the mechanical
properties of the encapsulating hydrogel to
the lung tissue being studied (Figure 1), it
was critical to control the thickness of
the embedding material as well as the
concentration of cell-adhesive ligands. The
synthetic PEG-based hydrogels presented
here were a highly reproducible platform
that supported iterative changes in
hydrogel composition and thickness
to facilitate optimization. This
comprehensive study of several variables
revealed that, even though many hydrogels
supported PCLS architecture and
viability, only one out of the nine
hydrogel conditions tested maintained
PCLS architecture, viability, and cellular
diversity over 21 days in culture (Figures 2
and 3).

Fully synthetic PEG-hydrogels are
biologically inert, and can be engineered
to present a specific, cell-instructive
microenvironment. This feature
was leveraged to preserve epithelial–
mesenchymal interfaces within embedded
PCLS. Prior research has shown that
supporting adequate numbers of functional
alveolar epithelial type II (ATII) cells
within PCLS is important for evaluating
the results of studies focused on adult
lung remodeling and fibrosis. In fact, two
recent reports supported the reparative
role of ATII cells to sustain neighboring
fibroblasts in a quiescent state with low
levels of contractility, proliferation, and
matrix production (40). The hydrogel
mimics of ECM designed here were

fabricated to direct integrin binding and
subsequent cellular function without
degrading over time (41). Specifically, our
group (18) and others have demonstrated
that b1 integrin expression is positively
correlated with maintenance of stemness in
epidermal epithelial cells (22). For this
reason, two short peptide sequences that
bind b1-class integrins expressed by cells in
the lung, RGDS (a5b1) and YIGSR (a3b1)
(19), were covalently incorporated into
encapsulating materials. Statistical analysis
revealed that intermediate concentrations
of these ligands (0.1 mM RGDS and
0.2 mM YIGSR) supported production of
SFTPC by ATII cells (i.e., maintained
functionality of ATII cells within PCLS)
(Figure 3; P= 0.072). Preserving b1 integrin
binding and signaling is one potential
mechanism for this improvement over
nonembedded controls. Similarly, excess
proliferation of mesenchymal cells was
prevented by designing the encapsulating
hydrogel to be nonbiodegradable (Figure 3).
A similar strategy has been shown
to limit proliferation of embedded
cells due to the small pore size of
the molecular network and inability
for cells to remodel the material (42).
This high level of tunability promoted
stability of cellular phenotype and
maintenance of epithelial–mesenchymal
communication, which will be foundational
for improved ex vivo models of chronic
pulmonary diseases and longer-duration
investigations.

In addition to preserving cellular
viability and function, this encapsulation
procedure can also support induction and
subsequent treatment of pathogenic cellular
mechanisms. Diffusion results (Figures 3F
and 3G) indicated that a range of molecules
representing different sizes and surface
energies could be adequately delivered
through the embedding hydrogel material.
Fluorescein (376 g/mol) was used as a
surrogate for small hydrophobic molecules,
including lysophosphatidic acid (436
g/mol) (38), nintedanib (540 g/mol) (37),
and pirfenidone (185 g/mol) (37). FITC-
dextran (40 kg/mol) represented larger,
more hydrophilic compounds, such as
elastase (29 kg/mol) (36) and transforming
growth factor-b1 (44 kg/mol). Growth
factor and enzyme delivery to PCLS
have been studied for induction of
chronic disease characteristics to study
the molecular mechanisms underlying IPF
(9) and COPD (37). Supported by the
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embedding process described here,
these models can provide the foundation
for high-throughput identification of
potential molecular targets for drug
discovery.

Longer-duration culture of PCLS,
especially using human-derived tissue,
has broad applications in pulmonary
sciences and medicine. In addition to
the applications in modeling chronic
pulmonary diseases described here, these
models can evaluate responses to injury,
such as acute hypoxia (43, 44), acute
respiratory distress syndrome (45), and
COPD or asthma exacerbations, allowing
the time needed to both induce injury and
monitor the repair and regeneration
processes that follow. The PCLS-
embedding procedure and precisely
designed hydrogel biomaterials reported

here are a major technological advance
that addresses significant limitations
cited in prior PCLS literature. Excitingly,
the required polymer components and
peptide sequences are commercially
available, easy to use, and readily
adaptable across all research domains. An
open-source scientific community
developed the 3D printer and software
presented in this report, highlighting a
team-science approach that promises
rapid development, wide access, and easy
sharing of technological advances (46, 47).
This model also affords the opportunity
to incorporate greater complexity in to
the ECM encapsulation, including
vascular supply (47), cyclical stretch
simulating respiration (48), and addition
of other important cell types, such as
immune cells (49). Further advances will

rapidly scale up high-throughput model
systems to support the translation of
drugs in development beyond current
capabilities. n
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